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AbssfrarL W study a tight-binding model, Y,+l +*%-I + AnVnYn = EV,? where 
V, is a Fibonacci a m y  of two patentials and A, = F-l lan-o .  For OL = 1 J 2 .  this 
model is asymptotically equivalent at large n lo a continuous Schriidinger equation with 
an electric field F and a quasiperiodic potential. We find that for this value of 01, almost 
all slate8 are changed from critical to extended  state^ as the field strength is increased. 
However, some shtm still remain critical and coexist with most extended states. We also 
discuss the results for other values of 0. 

Recently much attention has been paid to  the electronic structure of onedimensional 
quasiperiodic systems [1,2]. For example, it is generally believed that the energy 
spectrum of a Fibonacci chain is singular continuous and that all eigenstates are 
critical [1,2]. Critical states show self-similar or chaotic behaviour [2] and are neither 
localized nor extended. However, the effect of t h e  electric fields on the eigenstates 
of the quasiperiodic system has not been studied before. In this letter we consider 
a quasiperiodic Kronig-Penney model with a constant electric field. The Schrodinger 
equation is given as follows: 

where h2 = Zm, e = 1, F is the strength of the electric field, and V, is a Fibonacci 
array of two potentials V, and Vs. Potential V,, = V, + (V, - V,)([(n + l ) / ~ ]  - 
[./TI), with T = (6- 1)/2. Transport properties can be used to determine the 
nature of the eigenstates of this system. But, except for small fields, the Landaucr 
formula [3] may not be adequate to calculate the resistance RN of this system. As an 
alternative to this difficulty, Delyon er 01 [4] showed that this Schrodinger equation 
is asymptotically equivalent for large n to  the following tight-binding model: 

*,,+I + -rk'n-i + X,Vn*, = E*,  (2 )  

where -rk'" is the amplitude of the wavefunction at z' = a ,  and A, = F-'/'n-* with 
a = 1/2. The benefit of this tight-binding model is that Landauer formula can he 
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used to find the resistance for all values of F.  Since the effect of the electric field 
is included only in the site energies, the original site energies V, are modulated by 
the factor A, = F-1f2n- ' f2 .  We can also derive this tight-binding model using the 
Poincare map [5] which is obtained by equation (1) with the step function approxima- 
tion of electric potential F z  [6]. 'Ib test the validity of equation (Z), we first studied 
the periodic system with V, = Vo for all n. One finds that equation (2) shows 
WannierStark ladder r fsonanm [7,8] for small fields, consistent with the known 
?e..!&. 

We study equation (2) with quasiperiodic potentials by the secondader  pertur- 
bation theory and numerical calculations. It is found that when a = 112, almost all 
states are changed from critical to extended states as the field strength is increased. 
However, there are some states which seem to be critical at the largest length scales 
we have examined, and it appears that they are critical in the infinite limit. For 
a > 1/2: all states are extended for laree fields. 

kr Kim et a1 [9] have found in a certain quasiperiodic system, critical states can 
change to localized states and coexist with them in one dimension. In this paper we 
show for the first time the transition between critical and extended states. The study 
of this transition seems to be very important both for understanding the electronic 
properties of quasicrystals and for understanding the geometric and external field 
effects on the electronic states of solid states. 

For large field limit, A, and the site energies are small and we can apply the 
perturbation theory of Thouless [lo] to this system. Up to the second order of 
F-'f2, the inverse localization length t-' of the unperturbed energy Eo = 2 cos 0 ,  
is given by 

." 
' k l  ' k = l  

whereV, = l+ l / r ( [ (n+ l ) / r ] - (n /r ] ) ,w i thr  = (&-1)/2,Thisperturbation 
theory is valid except for the regions near edges ( 0  = 0, T ) .  When the sample length 
N is sufficiently large, the first term inside the absolute value is 0 ( O a - ' )  [ll]. The 
sewnd iefm can be iranrformed to ioiiowing form 

E' means the omission of m = 0. By the properties ~~ of trigonometric series [12] we 
can get the following expression 

&(a) = Cf='=ll/ka,(a 2 O),and e,,, = p x f q r r / r  with p and q bcingan integer 
and a positive integer, respectively. This expression shows that the inverse localization 
length of most states is zero. Especially for 0 = e,,, the inverse localization length 
t-l has a finite value. When Q = 0, this system is essentially a quasiperiodic system 
without an electric field. As expected, perturbation theory shows that for most values 
of 8, E-' is zero, so the states are critical [13]. For a specific values of 0,  (-' 
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diverges, which means 0 = OPq corresponds to a gap. For a = 112, &(1/2) is 
O(fi). And C-l  has still a finite value for 0 = OPq. We obtain two results for 
a < 112. One is that E-' is zero for most values of 0, and the other is that there 
are gap structures in the energy spectrum. Because of the existence of the gap, we 
conjecture that for a < 1/2 there are some critical states. For o > 1/2,  is zero 
for all 0. Therefore all gaps die out, implying that all states are extended. Note that 
for smooth potentials in an electric field, the spectrum is absolutely continuous from 
-m to m and that there are no gaps [14]. 

'Ib study equation (2) beyond the perturbation theory, we first calculate the scal- 
ing behaviours of total bandwidth B, numerically, when the system is successively 
approximated by a periodic system with a period Ff. F, denotes the Ith Fibonacci 
number. We approximate T in V, by T, = F f - l / F f .  V, and V, are -1, and 1, 
respectively. Figure 1 shows the scaling behaviours of B, for F = 1. For a < 0.3 
E ,  scales to zero as 1 is increased. This means the spectrum is singular continuous 
and all states are critical for one equal to infinity. For a 0.4, E ,  decreases for 
small length scales, hut it increases again after some critical length. Therefore we 
can expect the spectmm for a 0.4 may be absolutely continuous in the infinite 
limit. However, by the perturbation theory, for a < 0.5 there are some gap struc- 
tures, which shows that there may also be some critical states. As figures 2(b)  and 3 
show, there are critical states among most extended states For smaller fields there 
are more critical states. In the mean time, the corresponding spectra also show the 
WannierStark ladder resonances for small fields [lS]. This behaviour is similar to 
that of the disordered system with an electric field [16]. In that case, resonances are 
believed to be related to power-law localized states. 

Fmre 1. Scaling behaviours of total band width Bt for various values of 01 as this 
system is successively approximated by a periodic system of period Ft. Note that 2- and 
y-axis are logarilhmic scales. 

'Ib investigate thc nature of the eigenstates, we calculate the resistance of an 
electron impinging this sample with an energy E. Figure 2 shows the N depen- 
dence of the average resistance = ( 1 / N )  CL, Ri with respect to the sample 
length for F = 10.0,a = 0.5, and N = 80000. Figures 2 (a) and (b) represent 
E = -1.8485, and E = 1.92000556 respectively. The behaviour of the average 
resistance has been demonstmted to be a good criterion to distinguish the three types 



Fylre 2. N dependence of the average resistance x for (a) E = -1.8485 and 
(a) E = 1.92000556 when m = 0.5 and F = 10. Ihe detailed behaviour is shown 
in the inset. 
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Figure 3. Ihe .behaviour of the wavefunction at ,E = 1.920 005 5 6 ,  m = 0.5, and 
F = 10. 

of states [9,17]. For !;hart length scales, as can be seen in the inset of figure 2(a), it 
shows a highly fluctuating behaviour. However, when the sample length is increased, 
fluctuations die out showing an extended behaviour. For F = 10, the average resis- 
tance of most states shows the extended behaviour. We can understand this easily, 
because for large sample length the energy from the electric field is large enough to 
overcome potential energies. 

We expected from the previous perturbative approach some critical states for 
a = 1/2. From figure 2(b), we find the average resistance behaves as in figure Z(a) 
in a small length scale. But it displays large fluctuations even for large length scales, 
which means the state is critical for the sample length going to infinity. These 
fluctuations come from the clustering of the energy levels and are the evidence of 
the singular continuous spectrum. There are indeed some critical states coexisting 
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with most other extended states. As we increase F, these critical states change to 
extended states. 

Figure 3 displays the wavefunction of the critical state for the same parameters as 
figure 2(b). For the large sample lengths it shows self-similarity and fluctuations on 
larger scales. In contrast to that of the usual Fibonacci chain, [Z] small fluctuations 
are weakened as the sample length is increased. These behaviours of the average 
resistance and the wavefunction are consistent with our previous results [9,17] on 
critical states and confirm that the state is indeed critical. 

0 B IS 2.d 
N 

Figure 4. N dependence of x for (1) E = 0.0399465,F = I ; ( Z ) E  = 
0.041 08, F = 5; and (3) E = 0.041 30, F = 10. 

Next we study the transition between critical and extended states as a function of 
- the electric field F.  Figure 4 shows the changing behaviours of the average resistance 
R for a = 1/2, E = 0.0399465 and N = 60000, as F is increased. The electric 
field for the curves (l), (Z), and (3) is 1, 5, and 30, respectively. When F = 1, we 
can see many coupled oscillations. As F is increased, the oscillations with longer 
periods die out. The curve for F = 30 clearly shows that the state is extended. 
There seems to be a critical field after which the state is extended, In this figure we 
disregarded the energy shift due to the change of the eletric field strength F. Since 
the energy spectrum is nearly symmetric with respect to E = 0, this result seems to be 
qualitatively correct. Experimentally this transition might be found in the Fibonacci 
superlattice [18] with an electric field. For small fields most states are critical. And 
for large fields most states are extended. Therefore the transition between critical 
and extended states can be found by changing the electric field in photoluminesence 
experiment [19]. 

In conclusion, we have studied the asymptotically equivalent tight-binding model 
of a one-dimensional quasiperiodic system with an electric field. We find the coexis- 
tence [20,21] of the critical and extended states and, more interestingly, the transition 
between the two states as a function of the electric field. This transition might be 
checked in a Fibonacci superlattice. The energy spectrum shows the WannierStark 
ladder structure for small fields. 
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